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Abstract. A parallel algorithm for the simulation of wave field in 3D
heterogeneous media with a curved free surface is proposed. In this paper
we use a mapping method to transform the initial problem. It is based on
the construction of a curvilinear mesh that conforms with the geometry
of the free surface in the domain of interest. This domain is then to
be mapped onto the “calculation” rectangular domain covered with a
regular mesh. Therefore, now we have the initial problems restated in
generalized coordinates but in the domain of simple geometry. To solve
the transformed problem in the “calculation” domain, we use a finite
difference method. Numerical tests were carried out on the SSCC cluster
of SB RAS. The results of numerical simulation are presented.

Keywords: 3D · Wave field · Elasticity · Parallel algorithm ·
Simulation · Curvilinear mesh · Finite difference method

1 Introduction

The numerical simulation of elastic waves is actively used in studying the seismic-
wave propagation in 3D complex media. There are several principal methods to
compute a wave field: Finite differences [1–5], finite elements [6], spectral ele-
ments [7,8], discontinuous Galerkin [9,10], finite volumes [11], and combinations
of these methods [12–14]. Finite elements, discontinuous Galerkin and spectral
methods can provide a high accuracy by increasing the dimension of the func-
tional space used. The methods in question can be applied on irregular meshes.
However the generation of a mesh in this case is time consuming and is difficult
to automate. Finite difference methods are universal when solving such problems
in the Cartesian coordinate system. These methods are applied in this paper.
Note that often the domain under study can have a complex geometry of the free
surface (solid/air interface). For the consistency of the numerical model and the
physical model a curvilinear mesh is used. The theory of curvilinear meshes con-
struction and application for solving real problems is considered in detail within
[15–17]. As applied to the problems of elastodynamics, curvilinear meshes were
c© Springer Nature Switzerland AG 2019
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2 P. Titov

utilized in [18,19] for a 2D case, and in [20–22] for 2D and 3D case, respectively.
A distinctive feature of this paper is the use of the original mesh generator that
allows better accuracy of numerical realization for the free surface conditions.
From [20–22] author has taken a balance technique idea to construct the finite
difference scheme. Considering the size of the domain in solving real-scale prob-
lems (tens of kilometers in each coordinate direction), it is necessary to carry out
the numerical simulation using high-performance systems. The use of a curvi-
linear mesh in the finite difference method implies the original problem to be
solved in generalized coordinates. The author has developed and implemented a
parallel 3D algorithm using the Fortran language and the MPI library.

Both the test for the simulation of wave fields in heterogeneous medium as
well as the test for the algorithm scalability, were carried out on the cluster
NKS-30T of SSCC SB RAS.

2 Statement of the Problem

The wave field simulation is carried out based on the numerical solution of
the elasticity linear system, expressed via displacements in Cartesian coordi-
nates. If perturbations occur in a medium, the particles of the medium devi-
ate from the equilibrium position when a wave passes through them. The
deviation is represented by the displacement vector (u, v, w)T . The density ρ,
longitudinal waves speed Vp, share wave speed Vs and the Lame coefficients
λ = ρ(V 2

p − 2V 2
s ), μ = ρV 2

s are the medium parameters, (Fx, Fy, Fz)T is the mass
force vector that represents a source of perturbations. Physical domain geometry
is also considered to be given.

By restoring the displacement vector at each point of the domain at each
time instant, we can simulate the process of elastic waves propogation.

The sequence of steps to solve the problem can be represented as follows:

1. Statement of the problem and its mathematical formulation in Cartesian and
generalized coordinate systems.

2. Construction of a curvilinear mesh consistent with physical domain geometry.
3. Development of the numerical parallel algorithms to solve the problem.
4. Software implementation of the parallel numerical algorithms.
5. Conducting experiments on a parallel architecture for the complex media

models.

2.1 Mathematical Model in Cartesian Coordinates

We introduce the following notations: ∂Γ is the boundary of the domain inside
the ground, ∂S is the free curvilinear surface. In Cartesian system (x, y, z), the
equations are:
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ρ
∂2u

∂t2
=

∂σxx

∂x
+

∂σxy

∂y
+

∂σxz

∂z
+ Fx

ρ
∂2v

∂t2
=

∂σxy

∂x
+

∂σyy

∂y
+

∂σyz

∂z
+ Fy

ρ
∂2w

∂t2
=

∂σxz

∂x
+

∂σyz

∂y
+

∂σzz

∂z
+ Fz

(1)

where
σxx = (λ + 2μ)

∂u

∂x
+ λ

∂v

∂y
+ λ

∂w

∂z
, σyy = λ

∂u

∂x
+ (λ + 2μ)

∂v

∂y
+ λ

∂w

∂z
,

σzz = λ
∂u

∂x
+ λ

∂v

∂y
+ (λ + 2μ)

∂w

∂z
, σxy = μ

∂u

∂y
+ μ

∂v

∂x
, σxz = μ

∂u

∂z
+ μ

∂w

∂x
,

σyz = μ
∂v

∂z
+ μ

∂w

∂y
are components of the stress tensor σ.

Condition on the free surface ∂S: σ · n = 0, or in the scalar form,

nx

(
(λ + 2μ)

∂u

∂x
+ λ

∂v

∂y
+ λ

∂w

∂z

)
+ ny

(
μ

∂u

∂y
+ μ

∂v

∂x

)
+ nz

(
μ

∂u

∂z
+ μ

∂w

∂x

)
= 0

nx

(
μ

∂u

∂y
+ μ

∂v

∂x

)
+ ny

(
λ

∂u

∂x
+ (λ + 2μ)

∂v

∂y
+ λ

∂w

∂z

)
+ nz

(
μ

∂v

∂z
+ μ

∂w

∂y

)
= 0

nx

(
μ

∂u

∂z
+ μ

∂w

∂y

)
+ ny

(
μ

∂v

∂z
+ μ

∂w

∂y

)
+ nz

(
λ

∂u

∂x
+ λ

∂v

∂y
+ (λ + 2μ)

∂w

∂z

)
= 0 (2)

where (nx, ny, nz)T is the unit normal to the free surface.
The conditions on the inside boundary ∂Γ are:

u|∂Γ = v|∂Γ = w|∂Γ = 0 (3)

The initial conditions:

u|t=0 = v|t=0 = w|t=0 = 0,
∂u

∂t

∣
∣
∣
∣
t=0

=
∂v

∂t

∣
∣
∣
∣
t=0

=
∂w

∂t

∣
∣
∣
∣
t=0

= 0 (4)

2.2 Mathematical Model in Generalized Coordinates

We consider (q1, q2, q3) to be the new generalized coordinates. System (1) must
be accordingly transformed:

ρ
∂2u

∂t2
=

1
J

(
∂σ̃1

∂q1
+

∂σ̃2

∂q2
+

∂σ̃3

∂q3

)

+ Fx

ρ
∂2v

∂t2
=

1
J

(
∂σ̃4

∂q1
+

∂σ̃5

∂q2
+

∂σ̃6

∂q3

)

+ Fy

ρ
∂2w

∂t2
=

1
J

(
∂σ̃7

∂q1
+

∂σ̃8

∂q2
+

∂σ̃9

∂q3

)

+ Fz

(5)

where

σ̃1 = J

(

σxx
∂q1

∂x
+ σxy

∂q1

∂y
+ σxz

∂q1

∂z

)

, σ̃2 = J

(

σxx
∂q2

∂x
+ σxy

∂q2

∂y
+ σxz

∂q2

∂z

)

,
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4 P. Titov

σ̃3 = J

(

σxx
∂q3

∂x
+ σxy

∂q3

∂y
+ σxz

∂q3

∂z

)

, σ̃4 = J

(

σxy
∂q1

∂x
+ σyy

∂q1

∂y
+ σyz

∂q1

∂z

)

,

σ̃5 = J

(

σxy
∂q2

∂x
+ σyy

∂q2

∂y
+ σyz

∂q2

∂z

)

, σ̃6 = J

(

σxy
∂q3

∂x
+ σyy

∂q3

∂y
+ σyz

∂q3

∂z

)

,

σ̃7 = J

(

σxz
∂q1

∂x
+ σyz

∂q1

∂y
+ σzz

∂q1

∂z

)

, σ̃8 = J

(

σxz
∂q2

∂x
+ σyz

∂q2

∂y
+ σzz

∂q2

∂z

)

,

σ̃9 = J

(

σxz
∂q3

∂x
+ σyz

∂q3

∂y
+ σzz

∂q3

∂z

)

.

Components of the mass force vector are Fx(t, x) = Fx(t, x(q), y(q), z(q)),
Fy(t, x) = Fy(t, x(q), y(q), z(q)), Fz(t, x) = Fz(t, x(q), y(q), z(q))

Here we offer only σxx in detail in order for reader to get a general idea of
equations complexity and how it imposes additional difficulties for numerical

solution: σxx = (λ + 2μ)
3∑

i=1

∂qi

∂x

∂u

∂qi
+ λ

3∑

i=1

∂qi

∂y

∂v

∂qi
+ λ

3∑

i=1

∂qi

∂z

∂w

∂qi
.

The rest components of the stress tensor σ are to be transformed the same
way. And as for the free surface condition (2), it transforms into:

nx

(

(λ + 2μ)
3∑

i=1

∂qi

∂x

∂u

∂qi
+ λ

3∑

i=1

∂qi

∂y

∂v

∂qi
+ λ

3∑

i=1

∂qi

∂z

∂w

∂qi

)

+

ny

(

μ

3∑

i=1

∂qi

∂y

∂u

∂qi
+ μ

3∑

i=1

∂qi

∂x

∂v

∂qi

)

+ nz

(

μ

3∑

i=1

∂qi

∂z

∂u

∂qi
+ μ

3∑

i=1

∂qi

∂x

∂w

∂qi

)

= 0

nx

(

μ

3∑

i=1

∂qi

∂y

∂u

∂qi
+ μ

3∑

i=1

∂qi

∂x

∂v

∂qi

)

+

ny

(

λ

3∑

i=1

∂qi

∂x

∂u

∂qi
+ (λ + 2μ)

3∑

i=1

∂qi

∂y

∂v

∂qi
+ λ

3∑

i=1

∂qi

∂z

∂w

∂qi

)

+

nz

(

μ
3∑

i=1

∂qi

∂z

∂v

∂qi
+ μ

3∑

i=1

∂qi

∂y

∂w

∂qi

)

= 0

nx

(

μ

3∑

i=1

∂qi

∂z

∂u

∂qi
+ μ

3∑

i=1

∂qi

∂x

∂w

∂qi

)

+ ny

(

μ

3∑

i=1

∂qi

∂z

∂v

∂qi
+ μ

3∑

i=1

∂qi

∂y

∂w

∂qi

)

+

nz

(

λ

3∑

i=1

∂qi

∂x

∂u

∂qi
+ λ

3∑

i=1

∂qi

∂y

∂v

∂qi
+ (λ + 2μ)

3∑

i=1

∂qi

∂z

∂w

∂qi

)

= 0

(6)

where (x1, x2, x3) = (x, y, z), J = det

(
∂xi

qj

)

, and

∂qi

∂xj
=

1
J

(
∂xj+1

∂qi+1

∂xj+2

∂qi+2
− ∂xj+1

∂qi+2

∂xj+2

∂qi+1

)

with the cyclic numeration i, j =

1, 2, 3. Components
∂qi

∂xj
are a metrical coefficients. They are defined by proper-

ties of the curvilinear mesh. The normal unit vector in generalized coordinates is
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The Simulation of 3D Wave Fields in Complex Topography Media 5

(nx, ny, nz) =

(
D(y,z)

D(q1,q2) ,
D(z,x)

D(q1,q2) ,
D(x,y)

D(q1,q2)

)

√
(

D(x,y)
D(q1,q2)

)2

+
(

D(y,z)
D(q1,q2)

)2

+
(

D(z,x)
D(q1,q2)

)2

with
D(x, y)

D(q1, q2)
=

∂x

∂q1

∂y

∂q2
− ∂x

∂q2

∂y

∂q1
,

D(y, z)
D(q1, q2)

=
∂y

∂q1

∂z

∂q2
− ∂y

∂q2

∂z

∂q1
,

D(z, x)
D(q1, q2)

=
∂z

∂q1

∂x

∂q2
− ∂z

∂q2

∂x

∂q1
.

Boundary conditions (3) and initial conditions (4) remain the same.
Now the equations in generalized coordinates are to be solved within a

domain of simple parallelepiped shape, that can be covered with regular 3D
mesh.

3 Constructing a Curvilinear Mesh

The technique of constructing a 3D mesh is considered in [12]. The main advan-
tage of building a mesh with the method described, is that the mesh nodes are
calculated analytically which means good scalability potential for the numerical
realization. In this study we will just note an important point: near the free sur-
face, all the coordinate lines of a curvilinear mesh are mutually orthogonal. This
way we can obtain better approximation accuracy of the free surface condition.

Also, we should mention, that due to specific features of the finite differ-
ence approximation of equations (5), (6), every cell unit for each discrete node
of the displacement vector (u, v, w)T consists of eight cell units of a curvilin-
ear mesh (Fig. 1). It allows better accuracy of metric coefficients and Jacobian
approximation.

4 Finite Difference Approximation

According to the results obtained in [12], the finite difference method possesses
a good scalability potential.

The factors ρ, λ, μ and u, v, w are positioned at the center of the cell unit.
The metrical coefficients and Jacobian are positioned at the center as well as in
the middle of every edge and side of the cell unit (Fig. 1). The indices (i, j, k)
are consistent with the axes (Oq1, Oq2, Oq3).

The position of u, v, w is explained by the complexity of equations (5). Unlike
as it is in [3], there is no benefit of using a staggered mesh. It would widen the
scheme template and, therefore, make worse the accuracy.

In order to develop a finite difference scheme, we have applied a balance
technique to (5). It is considered in detail in [23] for the case of Cartesian coor-
dinates.

V is the unit cell volume in Cartesian coordinates, V ′ is the corresponding
unit cell volume in generalized coordinates, which in our case has a cubic shape.
The length of V ′ edges in each direction is considered to be hq1 = hq2 = hq3 = h,
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6 P. Titov

Fig. 1. A scheme of elements position in cell units

S′ is the boundary of V ′. Also, S′ =
6∑

m=1
S′

m, where S′
1 is the side that contains

the node (i−1/2, j, k), and S′
2 - (i+1/2, j, k), S′

3 - (i, j−1/2, k), S′
4 - (i, j+1/2, k),

S′
5 - (i, j, k − 1/2), S′

6 - (i, j, k + 1/2), respectively. Here we will only illustrate
as an example how the balance technique is applied to the first equation of (1)
and (5). Integrating over a unit cell volume V

∫

V

ρ
∂2u

∂t2
dV =

∫

V

(
∂σxx

∂x
+

∂σxy

∂y
+

∂σxz

∂z

)

dV +
∫

V

FxdV (7)

and using the substitution of variables in (7) we come to:
∫

V ′
Jρ

∂2u

∂t2
dV ′ =

∫

V ′

(
∂σ̃1

∂q1
+

∂σ̃2

∂q2
+

∂σ̃3

∂q3

)

dV ′ +
∫

V ′
JFxdV ′ (8)

Applying the divergence theorem to (8) we have the following:
∫

V ′
Jρ

∂2u

∂t2
dV ′ =

∮

S′
(σ̃1n1 + σ̃2n2 + σ̃3n3) dS′ +

∫

V ′
JFxdV ′ (9)

where (n1, n2, n3) is a unit normal to ∂S′. Then (9) can be rewritten as:
∫

V ′
Jρ

∂2u

∂t2
dV ′ = −

∮

S′
1

σ̃1dS′ +
∮

S′
2

σ̃1dS′ −
∮

S′
3

σ̃2dS′ +
∮

S′
4

σ̃2dS′−
∮

S′
5

σ̃3dS′ +
∮

S′
6

σ̃3dS′ +
∫

V ′
JFxdV ′

(10)

For the convenience we will define finite-difference operators that are used
for constructing the scheme. Here h is the discrete space step, τ is the discrete
time step. AN

i,j,k = A(Nτ, ih, jh, kh), and for Jacobian and metrical coefficients
Bi,j,k = B(ih/2, jh/2, kh/2).

Dtt[f ]Ni,j,k =
1
τ2

(

fN+1
i,j,k − 2fN

i,j,k + fN−1
i,j,k

)

=
∂2f

∂t2
(Nτ, ih, jh, kh) + O(τ2),
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The Simulation of 3D Wave Fields in Complex Topography Media 7

D1[f ]Ni−1/2,j,k =
1
h

(

fN
i,j,k − fN

i−1,j,k

)

=
∂f

∂q1
(Nτ, ih − h/2, jh, kh) + O(q1q1),

D2[f ]Ni,j−1/2,k =
1
h

(

fN
i,j,k − fN

i,j−1,k

)

=
∂f

∂q2
(Nτ, ih, jh − h/2, kh) + O(q2q2),

D3[f ]Ni,j,k−1/2 =
1
h

(

fN
i,j,k − fN

i,j,k−1

)

=
∂f

∂q3
(Nτ, ih, jh, kh − h/2) + O(q3q3),

And

D1[f ]Ni,j−1/2,k =
1
4

(

D1[f ]Ni−1/2,j,k + D1[f ]Ni+1/2,j,k+

D1[f ]Ni−1/2,j−1,k + D1[f ]Ni+1/2,j−1,k

)

,

D1[f ]Ni,j,k−1/2 =
1
4

(

D1[f ]Ni−1/2,j,k + D1[f ]Ni+1/2,j,k+

D1[f ]Ni−1/2,j,k−1 + D1[f ]Ni+1/2,j,k−1

)

.

The rest operators D2[f ]Ni−1/2,j,k,D2[f ]Ni,j,k−1/2,D3[f ]Ni−1/2,j,k,D2[f ]Ni,j−1/2,k are
being defined in the same manner. Now the scheme for (10) in terms of the
above-described operators with allowance for the mean value theorem, takes the
form

ρi,j,kJ2i,2j,2kDtt[u]Ni,j,k =
1
h

(

−σ̃1
N
i−1/2,j,k + σ̃1

N
i+1/2,j,k − σ̃2

N
i,j−1/2,k+

σ̃2
N
i,j+1/2,k − σ̃3

N
i,j,k−1/2 + σ̃3

N
i,j,k+1/2

)

+ J2i,2j,2kFN
i,j,k

(11)

The detailed scheme for the first component of the right-hand side in (11) is as
follows:

σ̃1
N
i−1/2,j,k = J2i−1,2j,2k

(

σxx
N
i−1/2,j,k

(
∂q1

∂x

)

2i−1,2j,2k

+

σxy
N
i−1/2,j,k

(
∂q1

∂y

)

2i−1,2j,2k

+ σxz
N
i−1/2,j,k

(
∂q1

∂z

)

2i−1,2j,2k

) (12)

The rest components of (11) are to be done in the same manner. And, finally,
for σxy

N
i−1/2,j,k in (12) the finite difference scheme is:

σxy
N
i−1/2,j,k =

1
2
(μi−1,j,k + μi,j,k)

3∑

m=1

(
∂qm

∂y

)

2i−1,2j,2k

Dm[u]Ni−1/2,j,k+

1
2
(μi−1,j,k + μi,j,k)

3∑

m=1

(
∂qm

∂x

)

2i−1,2j,2k

Dm[v]Ni−1/2,j,k

where
(

∂qm

∂xl

)

2i−1,2j,2k

=
1

J2i−1,2j,2k

(

Dm+1[xl+1]2i−1,2j,2kDm+2[xl+2]2i−1,2j,2k−
Dm+2[xl+1]2i−1,2j,2kDm+1[xl+2]2i−1,2j,2k

)

.
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8 P. Titov

The rest components of the stress tensor σ are to be approximated the same
way. For the free surface condition, approximation does not differ from the one
covered in [12]. Overall, the scheme proposed provides second accuracy order
with respect to space and time, except for the interfaces between two layers
with different media parameters. In this case, accuracy reduces to first order in
space and to second order in time.

5 Parallel Algorithm and Its Realization

In this section we use the same technology as in [12]. In general, we decompose
the domain to small 3D-cubes, every one of which is being assigned to a single
process to realize the above finite difference scheme. After every time step, the
neighboring processes conduct the data exchange via created 3D-cube topology.
Each process has 26 neighbors. The parallel program was developed by means
of the Fortran language and the MPI library.

6 Numerical Simulation and Scalability Tests

Numerical tests are carried out on the NKS-30T cluster of SSCC SB RAS, on
SL390S G7 servers, each having 2× 6 core Xeon X5670 2.93 GHz and 96 Gb
RAM). In our case we have used CPUs exclusively.

For the simulation tests we have chosen the domain shown in Fig. 2, with
corresponding mesh in Fig. 3. The medium parameters are: size 18.0 × 18.0 ×
12.0 km; for layers I and III: ρ = 1.0 g/cm3, Vp = 1.0 km/s, Vp = 0.5 km/s; for
layer II: ρ = 0.81 g/cm3, Vp = 0.888 km/s, Vs = 0.222 km/s. The wave generator
is of a “pressure center” type, located at (x0, y0, z0) = (5.5 km, 9.0 km, 0.5 km).
For elements of F = (Fx, Fy, Fz) we consider

Fx =

{
∂δ(x − x0, y − y0, z − z0)

∂x
F1(t), 0 ≤ t ≤ 2,

0, t > 2,

Fy =

⎧

⎨

⎩

∂δ(x − x0, y − y0, z − z0)
∂y

F1(t), 0 ≤ t ≤ 2,

0, t > 2,

Fz =

{
∂δ(x − x0, y − y0, z − z0)

∂z
F1(t), 0 ≤ t ≤ 2,

0, t > 2,

where F1(t) = sin(πt − π) + 0.8sin(2πt − 2π) + 0.2sin(3πt − 3π) and δ(x, y, z)
is the Dirac delta.

The discrete domain size is 900 × 900 × 600 points, and the size of the curvi-
linear mesh is 1801× 1801× 1201 points. The required amount of RAM for such
a size of a problem is around 290 GB. In Fig. 4, the results of the wave field
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Fig. 2. The domain and its vertical slice with heterogeneous layers

Fig. 3. Curvilinear mesh

simulation for the component W of the displacement vector are presented. The
snapshots are taken from the cross-section that is parallel to the plane OXZ
and contains the point of the source position (x0, y0, z0). Also, in the Courant
stability condition Vpτ/h ≤ C/

√
3, we have taken C = 0.34.

To study the strong scalability properties of the parallel program and algo-
rithm developed, to each SL390S G7 server that has 12 cores, the cube with the
size of 240 × 240 × 240 points was assigned. The shape of the free surface or
medium parameters do not matter for such a test. We proportionally increase
the size of the domain and the number of cores. Thus, the amount of computa-
tion for each server remains the same, but the total number of data exchanges
between processes increases. Each core conducts one thread of calculations. Ide-
ally, the program execution time must not change, in which case the efficiency
is considered to be unity. However the presence of data exchanges impacts the
efficiency. Figure 5 shows the test results from which it can be seen that the
algorithm and the program have good scalability properties. Within the range
from 12 to 72 cores the efficiency drops to 0,946 and remains consistent through
the increase from 72 to 120 cores.
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Fig. 4. Wave field at the time instants 0.4 s, 4.4 s, 8.4 s, 12.4 s

Fig. 5. The results of the strong scalability tests

7 Conclusion

This paper proposes the algorithm of 3D seismic waves simulation in elastic
heterogeneous media for the domain with complex free surface geometry. The
problem is formulated in terms of displacements in Cartesian and in generalized
coordinates. Constructing a curvilinear mesh allows good consistency between
physical domain and computational domain. The main result of this paper is the
creation of the parallel 3D algorithm and its software implementations aimed at
the numerical modeling of elastic waves in isotropic heterogeneous 3D media with
complex free surface geometry. The algorithm was developed using the balance
technique and finite difference method. The novelty of the scheme constructed
is the positioning of metrical coefficients with respect to components of the dis-
placement vector, which allows better accuracy. The algorithm developed shows
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good results in terms of strong scalability. Further, the algorithm improvement
we see as: utilizing the CCPML method [24] to dispose of the side boundary
reflections; to adapt the program for other architectures like Intel Xeon Phi; to
increase the scalability and the energy efficiency of the algorithm by optimizing
RAM usage and data exchange.

Acknowledgement. The theoretical part of this research (Sects. 1, 2) has been sup-
ported by the Russian Science Foundation, project 17-17-01128. Work on Sects. 3, 4
was conducted within the framework of the budget project 0315-2019-0009 for ICMMG
SB RAS, and for the technical part, Sects. 5 and 6, were supported by the RFBR grants
19-07-00085 and 18-07-00757 respectively.
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